首先,发送特殊阻塞信息,并立即停止发送数据。特殊阻塞信息是连续几个字节的全1信号,此举意在强化碰撞,以使得其它电脑能够尽快检测到碰撞发生。
形象点说就是破罐子破摔,让大家看到交通拥挤,不要上路了。
其次,在固定时间内等待随机的时间,再次发送。
最后,如果依旧碰撞,则采用“截断二进制指数避退算法”进行发送。即十次之内,停止前一次“固定时间”的两倍时间内随机再发送,十次后,则停止前一次“固定时间”内随机再发送。尝试16次之后,仍然失败就放弃传送。
这个方式就好像交通拥挤的大都市,有关部门按照车牌号码安排单双号限行一样。
显而易见,以太网运行中的碰撞,会造成资源的一定程度浪费,在执行效率上欠缺优势。
与此形成鲜明对比的是,一个4M的令牌环网络,和一个10M的以太网数据传送率相当,一个16M的令牌环网络的数据传送率,接近一个100M的以太网。
之所以会有如此明显的差距,当然是因为彼此的基本运行原理迥然不同的缘故。
令牌环网络利用代表发讯号的许可——令牌,来避免网络中的冲突。
得到令牌的电脑,好比拉着警报的警车独享车道一样,独占网络发送数据,和以太网上各台电脑不断试探,寻找加塞机会的运行机制相比,理所当然地提高了网络的数据传送率。
而且,还可以通过令牌设定传送的优先度,满足高级别的网络资源需求。
从理论上看,令牌环网无懈可击,但在实际当中,由于网络不可复用,导致令牌环网利用率低下。
当网络中一台电脑拿到令牌开始使用网络后,不管这台电脑使用多少带宽,即使只用了4M当中的1M,其它电脑也必须等待其使用完网络并放弃令牌后,才有机会申请令牌并使用网络。
这就像一条道路上不间断行驶过特权车一样,即使有八车道,其它普通车辆也只能干瞪眼,上不了路。
尤其当网络变得复杂之后,每台电脑当中运行的程序都是人来编写的,隐隐携带的独占网络的愿望,让令牌在理论上的流通畅行程度,无法得到预期的保证,相应地,网络资源利用率也和理论值有着明显的差距。
总体而言,类似于计划经济的令牌环网,不如类似于市场经济的以太网有活力。
以太网上的电脑之间通过自发协调使用网络所带来的效益,超过了碰撞现象造成的损失。