アプリをダウンロード
20% MATHEMATICS CORE / Chapter 1: functions
MATHEMATICS CORE MATHEMATICS CORE original

MATHEMATICS CORE

作者: Sharif_Shabir

© WebNovel

章 1: functions

In mathematics, a function[note 1] is a binary relation between two sets that associates to each element of the first set exactly one element of the second set. Typical examples are functions from integers to integers, or from the real numbers to real numbers.

Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a function of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly enlarged the domains of application of the concept.

A function is a process or a relation that associates each element x of a set X, the domain of the function, to a single element y of another set Y (possibly the same set), the codomain of the function. It is customarily denoted by letters such as f, g and h.[1]

If the function is called f, this relation is denoted by y = f (x) (which reads "f of x"), where the element x is the argument or input of the function, and y is the value of the function, the output, or the image of x by f.[2] The symbol that is used for representing the input is the variable of the function (e.g., f is a function of the variable x).[3]

A function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function.[note 2][4] When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane. The set of these points is called the graph of the function; it is a popular means of illustrating the function.

Functions are widely used in science, and in most fields of mathematics. It has been said that functions are "the central objects of investigation" in most fields of mathematics.[5]

Schematic depiction of a function described metaphorically as a "machine" or "black box" that for each input yields a corresponding output


next chapter
Load failed, please RETRY

週次パワーステータス

Rank -- 推薦 ランキング
Stone -- 推薦 チケット

バッチアンロック

目次

表示オプション

バックグラウンド

フォント

大きさ

章のコメント

レビューを書く 読み取りステータス: C1
投稿に失敗します。もう一度やり直してください
  • テキストの品質
  • アップデートの安定性
  • ストーリー展開
  • キャラクターデザイン
  • 世界の背景

合計スコア 0.0

レビューが正常に投稿されました! レビューをもっと読む
パワーストーンで投票する
Rank NO.-- パワーランキング
Stone -- 推薦チケット
不適切なコンテンツを報告する
error ヒント

不正使用を報告

段落のコメント

ログイン